
Scriptable Core Data

User's Guide

2008 June 14

Contents

Introduction to Scriptable Core Data
Overview of Scriptable Core Data ...7

Status and Directions ..8

Why AppleScript? ..10

Why Core Data? ..11

Prior Work on Core Data and AppleScript ...12

Goals of the SCD Framework
"Make the pain go away!" ...14

Dynamic sdef Generated at Run Time from your Data Model ..15

"Opt-in" ...16

Make the first 90% easy ...17

Come for the AppleScript, Stay for the Persistent Order ..18

Core Data and AppleScript—What's the Same and What's Different? ...20

How the SCD Framework matches Core Data to AppleScript ...24

The Model-Document-Suite Design Pattern ..26

SCD Keys and Values in the Data Model "User Info"
Xcode's Data Model Editor's User Info for Entities, Relationships, and Attributes ..29

How SCD Exploits User Info in the Data Model

Dynamic sdef Generation: Data Model + codes + terms = sdef
Scriptable Entities, Attributes, and Relationships: sdef keys and values ...35

The Containment Root
Specifying the Suite's sdef keys and values ..40

Specifying the Document's Elements and Properties: sdef keys and values ..43

Specifying SCD Core Data Run Time Behavior

1-1

1

Specifying the Ordering Behavior of To-Many Relationships ...47

Specifying Other Behavior in Relationships: "new/delete" ..50

Specifying Class Name for Attributes of "Undefined" Core Data Type ..51

The SCD Distribution
Introduction ...55

The SCD Framework
Overview of the SCD Framework ...57

The SCD Data Model and Its Entity Classes ...58

A Prototype Custom Data Model with Custom Subclasses ...60

The SCDToMany Class Cluster ..62

Dynamic sdef Generation ...63

The SCD Example Application Projects
Introduction ...65

Bricks+SCD
Overview ..67

Data Model ...68

Test Scripts ..70

OutlineEdit+SCD
Overview ..72

Data Model ...73

Test Scripts ..76

Sketch+SCD
Overview ..78

Data Model ...80

Supporting the sdef from the Sketch-112 example ..82

Test Scripts for the Sketch-112 sdef ..83

Extending the sdef from the Sketch-112 example with SCD Commands ..84

Test Scripts for the Sketch-112 sdef Extended with SCD Commands ...86

1-2

A Test Script using the Dynamically Generated sdef ...87

Guidelines for the Adopting Developer
Adopting an Existing Core Data Document-based Application to use the SCD Framework ..89

Observations from the Development Cycle
Core Data Models and Hierarchy ..93

Scripting Definition Files—We Need a Way to Check an sdef at Design Time ...94

A Retrospective ...95

1-3

Introduction to Scriptable Core Data

Overview of Scriptable Core Data ..7

Status and Directions ...8

Why AppleScript? ..10

Why Core Data? ..11

Prior Work on Core Data and AppleScript ...12

Goals of the SCD Framework
"Make the pain go away!" ..14

Dynamic sdef Generated at Run Time from your Data Model ...15

"Opt-in" ..16

Make the first 90% easy ..17

Come for the AppleScript, Stay for the Persistent Order ...18

Core Data and AppleScript—What's the Same and What's Different? ...20

How the SCD Framework matches Core Data to AppleScript ...24

The Model-Document-Suite Design Pattern ..26

SCD Keys and Values in the Data Model "User Info"
Xcode's Data Model Editor's User Info for Entities, Relationships, and Attributes ..29

How SCD Exploits User Info in the Data Model

Dynamic sdef Generation: Data Model + codes + terms = sdef
Scriptable Entities, Attributes, and Relationships: sdef keys and values ...35

The Containment Root
Specifying the Suite's sdef keys and values ..40

Specifying the Document's Elements and Properties: sdef keys and values ...43

Specifying SCD Core Data Run Time Behavior
Specifying the Ordering Behavior of To-Many Relationships ..47

2-1

2

Specifying Other Behavior in Relationships: "new/delete" ..50

Specifying Class Name for Attributes of "Undefined" Core Data Type ..51

2-2

Overview of Scriptable Core Data

The Scriptable Core Data Framework (SCD) is an open-source project for the Mac OS X (Leopard) developer

community. The SCD distribution includes Xcode projects for the SCD Framework and three example applications.

See: Scriptable CoreData (SCD)

With the SCD Framework, adopting developers can implement AppleScript enabled Core Data Document-based

applications,

starting with a new project;

from an existing Core Data Document-based application project; or

from an existing Cocoa Document-based application.

The resulting application can use Leopard's dynamic sdef feature to

calculate a useful AppleScript Dictionary at run time; or

resort to an sdef file composed in the usual way.

The SCD Framework can optionally provide persistent order among members of to-many relationships. This

feature is independent of the AppleScript dictionary, or even whether AppleScript is enabled for the application.

During the development cycle, the adopting developer can use AppleScript to test incrementally. Test scripts can use

an AppleScript dictionary generated dynamically from the data model. The dynamic sdef tracks changes in the data

model through the development cycle.

The dynamic sdef simply exposes the Core Data Model and a document's graph of objects. Scripters can "peak and

poke" at the object graph and at the attributes of the objects. They can also modify the graph of objects with "make

new", "duplicate", and "delete" commands.

Apple encourages Cocoa developers of new applications to provide at least a minimal AppleScript dictionary initially.

Then, the users and scripters can guide the developers toward the additional AppleScript features they want in later

versions. The AppleScript dictionary provided dynamically by the SCD Framework provides "just enough scriptability,"

and can serve as a useful initial dictionary.

3-1

3

http://scriptcoredata.sourceforge.net/

Status and Directions

Status

The SCD Framework is well beyond a mere feasibility study, but has not nearly reached maturity.

The first focus of efforts on SCD Framework was: "How can we do this at all?" The result was the Bricks+SCD

example.

The next focus was: "Can we retrofit a simple existing Core Data Document-based app?" The result was the

OutlineEdit+SCD example.

Then, the focus was: "Can we retrofit an existing Cocoa Document-based app for Core Data persistence and

AppleScript? The result was the Sketch+SCD example.

No effort has yet been directed toward a set of intermediate but simpler problems that arise next: "Given a Core

Data Document-based application that implements its own order among some of the to-many relationships in its

Data Model, can we add Data Model user info annotations to support dynamic sdef generation seamlessly?" At this

writing, it seems likely that to answer affirmatively, a first step would be to add some user info keys and values for

entities and relationships. The SCD Framework should support:

an entity user info key to indicate that the entity needs no additional SCD support to implement AppleScript;

a relationship user info key to indicate the the relationship already orders its elements, and needs no additional

SCD support; and

a relationship user info key to specify a custom subclass of SCDToManyArray.

Directions

NSError/NSException management is sparse.

There is no direct support for Fetched Properties. Its development awaits a good example application. SCD does not

prevent the use of Fetched Properties, it merely fails to provide a way to enable them as AppleScript properties.

The SCD build settings specify automatic garbage collection. No effort has been expended toward "manual"

garbage collection in the SCD Framework. This work may wait until some adopting project needs it.

There is no support for cross-checking AppleScript four-character codes in a dynamically generated sdef. Some of

4-1

4

the related design choices remain unclear to the SCD collaboration at this writing.

4-2

Why AppleScript?

Cocoa developers should see AppleScriptability as a way of helping their customers. Customers can extend an

AppleScript enabled application in ways that the developer cannot foresee. Customers can build features tailored to

their specific needs.

For the Mac OS X user, AppleScript is more than just the language. It is also the set of scriptable applications suitable

to the work at hand. Each application's AppleScript dictionary extends the AppleScript language in directions useful to

its users.

The "UNIX Way" for "the Rest of Us"

In some important ways, AppleScript—the language plus the applications—provides for Mac OS X scripters

something comparable to the "UNIX Way." It provides lots of simple, interoperable, scriptable tools, and then lets

users exploit and combine them in AppleScripts to solve their own complicated problems.

Apple's Automator application makes this process even more approachable and powerful.

Customer Loyalty

Historically, customers who script an application have become very loyal customers. To put it crassly, once you've

got 'em by their "Business Logic," their hearts and minds will follow.

To put it more tactfully, your application builds customer loyalty by enabling and empowering your customers.

Developer Loyalty, too

AppleScript provides another avenue for regression testing. And of course, once you ship an AppleScript enabled

app, it becomes a key regression testing mechanism.

5-1

5

Why Core Data?

Core Data is a big advance in Cocoa.

Primarily, Core Data provides a persistence mechanism, but it also provides advanced support for:

Undo/Redo

More general change propagation and management, including maintaining consistency among relationships.

Think "Undo/Redo for the graph of objects in your app's Data Model."

KVC and KVO, including optional support for bindings.

Fetching and Filtering.

The Core Data Model brings the Entity-Relationship formalism to the "Model" component of the "Model-View-

Controller" design pattern. Xcode's Data Model editor makes your "Model" explicit and regular. The developer sees

and edits a graph of entities, their attributes, and their relationships.

Core Data helps enormously to manage more complex projects.

6-1

6

Prior Work on Core Data and AppleScript

Several earlier publication deserve recognition.

Bill Cheeseman!s Wareroom Demo

http://www.quecheesoftware.com/downloads/WareroomDemo.html

See the extensive AppleScript test suite!

Red Sweater Blog, “We need a hero”

http://www.red-sweater.com/blog/195/we-need-a-hero

mac geekery, “Adding Basic AppleScript to Core Data Applications”

http://www.macgeekery.com/development/

All these authors inspired and motivated the work in the SCD Framework, but of these, Bill Cheeseman's work provided

the most in-depth example and the most valuable insight.

7-1

7

http://www.macgeekery.com/development/
http://www.quecheesoftware.com/downloads/WareroomDemo.html
http://www.red-sweater.com/blog/195/we-need-a-hero

Goals of the SCD Framework

"Make the pain go away!" ..14

Dynamic sdef Generated at Run Time from your Data Model ...15

"Opt-in" ..16

Make the first 90% easy ..17

Come for the AppleScript, Stay for the Persistent Order ...18

8-1

8

"Make the pain go away!"

The primary goal of the SCD Framework is to reduce the threshold to AppleScript enable a Core Data Document-

based application. As the reader can readily see from the prior work, this ain't so easy.

Part of that pain has included the additional tooling for composing an sdef, and the additional effort to keep the sdef

and data model synchronized. The developer typically uses Xcode as the primary IDE, but must use some other tool

to compose the sdef.

The author highly recommends:.Sdef Editor.

However, if the Data Model changes, typically the sdef must change, too.

Instead, the SCD Framework lets the developer exploit a feature of Xcode to annotate the Data Model.

The sdef generated dynamically at run time automatically tracks the current Data Model:

Motto: "Data Model + codes + terms = sdef".

A recent addition to the SCD Framework is support for dynamic KVO, per relationship. An object—a controller or a

view, for example—can add itself as a observer to a to-many relationship in the Data Model. The SCD Framework

then:

adds the observer to any objects already in the relationship;

adds the observer to any objects subsequently added to the relationship; and

removes the observer from objects subsequently removed from the relationship; while

mindfully respecting the managed object life cycle.

SCD's API is distinct from the normal Cocoa API for KVO, so the adopting developer won't invoke this behavior by

accident.

The SCD Framework provides support for optional persistent order among members of to-many relationships.

Each managed object can preserve the order in any of its to-many relationships.

9-1

9

Dynamic sdef Generated at Run Time from your Data Model

Dynamic sdef generation is a new feature in Mac OS X 10.5 Leopard. When an AppleScript or Script Editor needs to

use your app's sdef, it sends an event to your app, and SCD handles the event.

By default, the SCD framework generates a useful sdef at run time from the current version of the Data Model, using

the developer's annotations. In your Info.plist, just add:

<key>NSAppleScriptEnabled</key>

<string>YES</string>

<key>OSAScriptingDefinition</key>

<string>dynamic</string>

You can override SCD's support to return a different sdef, perhaps conventionally composed and stored in your app's

Resources as usual.

10-1

10

"Opt-in"

The adopting developer can "opt in" for the features of the SCD Framework

per entity

per attribute

per relationship

You can bypass SCD in any entity. Just let it inherit from NSManagedObject directly or through some different

hierarchy.

11-1

11

Make the first 90% easy

The SCD Framework makes it easy to AppleScript enable a new or an existing Core Data Document-based application.

The first 90% may be all you need for an initial AppleScript enabled version.

It does NOT make the remaining 10% impossible. The remaining 10% amounts to providing support for AppleScript

commands, events, and types. The developer achieves that last 10% in the same way as before, namely by composing

and testing a more extensive sdef. See Sketch+SCD. However, with SCD, the developer has the advantage of starting

with a working AppleScript enabled application and a basic, working sdef.

12-1

12

Come for the AppleScript, Stay for the Persistent Order

The SCD Framework manages order among members of to-many relationships at the framework level, and the

developer can "opt in" for persistent order, per relationship, with or without AppleScript enabling the relationship.

Core Data's lack of persistent order amounts to a delayed failure of WYSIWYG, at least for "readably small" to-many

relationships. It just "looks wrong" to make a Core Data document with a prominent to-many relationship, save the

document, re-open it, and discover a different order.

Consider the Core Data example project, OutlineEdit, at: /Developer/Examples/CoreData/OutlineEdit

Compile and run the application. Build a non-trivial outline document. Save it, and re-open it. You'll discover that the

document forgets the order of the entries. That failure renders the application useless for its nominal purpose, to

"edit outlines."

See also OutlineEdit+SCD.

AppleScript requires indexed access to to-many relationships, and some implementers have added special index

attributes to their entities to support this. This technique works well enough for one-to-many relationships, but does not

scale well in the case of many-to-many relationships where every container maintains its own order of "containees."

13-1

13

The SCD Framework provides an opt-in way for a container to manage and even preserve the order of its

"containees", per relationship.

Of course, for relationships that expect very large numbers of members, persistent order may not be appropriate. The

adopting developer must evaluate the tradeoffs in performance and footprint.

13-2

Core Data and AppleScript—What's the Same and What's Different?

The SCD Framework shows that Core Data and AppleScript can work together readily. Adopting developers should be

aware of the leading technical issues in the design decisions, and how the SCD Framework addresses them.

What's the Same?

A Core Data Document-based application depends on its data model. Its data model resides in a file (or files) with

the extension *.xcoredata, and provides a detailed, regular description of the application's "Model" component of the

"Model-View-Controller" design pattern. These data models use the "Entity-Relationship" formalism.

An AppleScriptable Cocoa application depends on its AppleScript Dictionary. The dictionary can reside in a few

forms, but this discussion focusses on the sdef form exclusively. An sdef AppleScript Dictionary provides a different

but comparable view of the application's "Model" component—the Classes, Properties, and Elements of an

AppleScript suite.

AppleScript Classes correspond to Core Data entities.

AppleScript properties correspond to Core Data to-one relationships and attributes.

AppleScript elements correspond incompletely to Core Data to-many relationships.

Motto: "Data Model + codes + terms = sdef"

These two expressions of an application's "Model" are sufficiently similar that a developer can compose a skeletal

AppleScript suite from a Core Data Model "by inspection." The process requires some additional information,

though. The developer must choose four-character codes and terms (names) for the AppleScript suite's Classes

and for the scalar Properties. A reverse operation is also straight-forward. A developer can inspect an AppleScript

dictionary and, with restrictions, compose a data model from it.

What's Different?

Core Data's to-many relationships use NSSets. AppleScript expects something more like NSArrays. Core Data

provides no intrinsic means of ordering members of to-many relationships, but AppleScript relies on indexed

accessors for to-many relationships.

AppleScript relies on a "containment hierarchy." A scriptable Core Data Document-based application must explicitly

14-1

14

declare the document's containment hierarchy. The SCD Framework provides an easy and natural way to attend to

this detail, but it amounts to an extra step.

AppleScript Dictionary Suites also provide Types, Commands, and Events. The Core Data Model has no natural

place for these constructs. Developers who must provide these AppleScript features can override SCD's dynamic

sdef.

A given AppleScript class can have no more than one collection per contained class. Consider the Address Book

AppleScript dictionary:

14-2

14-3

Suppose we wanted to add to the "person" class a few collections of different kinds of other persons, say, relatives,

friends, neighbors, and coworkers. Sorry: if you add an element comprising instances of the person class, it must

take the unique name "people", which is the declared plural of person.

One workaround for this restriction has been to declare an empty subclass for each additional collection. Core Data

has no such restriction. An entity can have an arbitrary number of to-many relationships to a given target entity. See

the Sketch+SCD example for a proposed workaround with SCD (SCD Commands to expose

NSScriptKeyValueCoding).

In Core Data, the typical to-many relationship has an an inverse relationship. By default, SCD exposes the inverse

relationship to AppleScript.

14-4

How the SCD Framework matches Core Data to AppleScript

Main Classes of the SCD Framework

The SCD Framework provides scriptable subclasses for two important Core Data classes.

SCDPersistentDocument:NSPersistentDocument

The adopting developer subclasses SCDPersistentDocument instead of NSPersistentDocument.

SCDManagedObject:NSManagedObject

Scriptable entities in the Data Model subclass from SCDManagedObject instead of NSManagedObject.

Non-scriptable entities remain as before.

The SCDManagedObject class uses a helper class cluster, SCDToManyArray, to manage the order of its

scriptable to-many relationships, on an "opt-in" basis.

Instances of SCDManagedObject instantiate one instance of SCDToManyArray or a subclass, per to-many

relationship, lazily.

The SCD Framework provides a bridge between the document and its Data Model's object graph.

SCDContainmentRoot is a helper class for SCDPersistentDocument. This abstract parent class manages the

containment hierarchy for a persistent document. The adopting developer creates a custom subclass of

SCDContainmentRoot in the Data Model to match the custom subclass of SCDPersistentDocument.

NSManagedObjectID and 'ID '

AppleScript can make use of an attribute of type NSString or NSNumber with the four-character code 'ID ' for

accessing elements "by ID". The SCDManagedObject class uses the Core Data's NSManagedObjectID's URI

representation in string form.

The dynamic sdef declares "unique ID" as a read-only AppleScript Property of the "managed object" class

(SCDManagedObject).

The uniqueID accessor calculates its return value from the receiver's NSManagedObjectID.

The SCD Data Model does not show a matching attribute.

15-1

15

AppleScript requires an object specifier (NSScriptObjectSpecifier) for each scriptable managed object. SCD returns

an instance of NSUniqueIDSpecifier, using the object's uniqueID.

Dynamic sdef Generation

Xcode ships with a little-used feature: a developer can annotate every entity, attribute, and relationship in a Data

Model by adding keys and values to its "user info" dictionary. There's already a natural place in the Data Model for

the codes and terms we need for the sdef. The SCD Framework defines some keys, and the adopting developer

provides the matching values.

The Sketch+SCD example provides provisional AppleScript API, in the form of a set of commands, to expose Core

Data's richer notion of containment, and SCDManagedObject's NSScriptKeyValueCoding protocol. The implementation

uses categories on classes (entities) of the SCD framework. These categories could readily move to the SCD

framework.

15-2

The Model-Document-Suite Design Pattern

Core Data uses a "Model-Document" design pattern. The pattern is established by the Xcode template for a new

project to support a “Core Data Document-based Application.” The template yields:

a custom class named MyDocument, subclassed from NSPersistentDocument; and

MyDocument.xcdatamodel.

The SCD Framework elaborates this design pattern to "Model-Document-Suite." If we retain "MyDocument" as a

shared name, the result is

a custom class named MyDocument, subclassed from SCDPersistentDocument;

a custom class named MyContainmentRoot, a "helper class" for MyDocument; and

MyDocument.xcdatamodel.

The default dynamically generated sdef declares an AppleScript Suite for the document, based on its containment

root.

Each instance of MyDocument owns a singleton instance of MyContainmentRoot. MyContainmentRoot inherits from

SCDContainmentRoot. MyDocument instantiates its MyContainmentRoot instance lazily, or retrieves it from its store.

The adopting developer implements a method in the custom document class:

In MyDocument.m

+(NSString*)containmentRootEntityName

{

return @"MyContainmentRoot";

}

Compare this technique to the familiar

- (NSString *)windowNibName

{

 return @"MyDocument";

16-1

16

}

MyContainmentRoot serves as:

the bridge between an AppleScript enabled document and its graph of scriptable Core Data objects;

the root of the document's AppleScript containment hierarchy;

a place for "user info" annotations that specify the AppleScript Suite associated with the Data Model; and

a place for any persistent attributes the document itself may need—the document's "print info", for example.

16-2

SCD Keys and Values in the Data Model "User Info"

Xcode's Data Model Editor's User Info for Entities, Relationships, and Attributes ..29

How SCD Exploits User Info in the Data Model

Dynamic sdef Generation: Data Model + codes + terms = sdef
Scriptable Entities, Attributes, and Relationships: sdef keys and values ...35

The Containment Root
Specifying the Suite's sdef keys and values ...40

Specifying the Document's Elements and Properties: sdef keys and values ...43

Specifying SCD Core Data Run Time Behavior
Specifying the Ordering Behavior of To-Many Relationships ..47

Specifying Other Behavior in Relationships: "new/delete" ...50

Specifying Class Name for Attributes of "Undefined" Core Data Type ..51

17-1

17

Xcode's Data Model Editor's User Info for Entities, Relationships, and Attributes

Apple's documentation for the Core Data Framework for the classes NSEntityDescription and NSPropertyDescription

describe the "userInfo" and "setUserInfo:" methods. Xcode's Data Model Editor gives the developer "table view" access

to these methods, and the SCD Framework exploits it. Some screen shots follow, taken from one of the example

application projects, Bricks+SCD.

18-1

18

18-2

And here's how those user info entries appear in the resulting sdef:

18-3

18-4

How SCD Exploits User Info in the Data Model

Dynamic sdef Generation: Data Model + codes + terms = sdef
Scriptable Entities, Attributes, and Relationships: sdef keys and values ..35

The Containment Root
Specifying the Suite's sdef keys and values ...40

Specifying the Document's Elements and Properties: sdef keys and values ...43

Specifying SCD Core Data Run Time Behavior
Specifying the Ordering Behavior of To-Many Relationships ..47

Specifying Other Behavior in Relationships: "new/delete" ...50

Specifying Class Name for Attributes of "Undefined" Core Data Type ...51

19-1

19

Dynamic sdef Generation: Data Model + codes + terms = sdef

Scriptable Entities, Attributes, and Relationships: sdef keys and values ..35

The Containment Root
Specifying the Suite's sdef keys and values ..40

Specifying the Document's Elements and Properties: sdef keys and values ..43

20-1

20

Scriptable Entities, Attributes, and Relationships: sdef keys and values

Entities

A scriptable entity must inherit from SCDManagedObject

Its user info

must have a four-character value for the key "sdef code"

must have a value for the key "sdef term"

may have a value for the key "sdef description"

may have a value for the key "sdef plural"

21-1

21

 <property name="unique id" code="ID " description="Core Data objectID's absolute URI, in string form"

type="text" access="r">

 <cocoa key="uniqueID"></cocoa>

 </property>

 </class>

 <class name="box" code="d2rc" description="A rectangular graphic" plural="boxes" inherits="graphic">

 <cocoa class="SKTRectangle"></cocoa>

 <property name="fill color" code="fclr" description="fill color" type="color">

 <cocoa key="scriptingFillColor"></cocoa>

 </property>

A scriptable entity may have scriptable attributes and relationships.

21-2

Attributes

A scriptable attribute must have a Core Data type that maps to an AppleScript type.

String maps to text.

Bool maps to boolean.

{Int 16, Int 32, Int 64} map to integer.

{Decimal, Double, Float} map to real.

{Bool, Int 16, Int 32, Int 64, Decimal, Double, Float} map to number.

Other types may require special attention.

Its user info

must have a four-character value for the key "sdef code"

must have a value for the key "sdef term"

may have a value for the key "sdef description"

may have a value for the key "sdef KVC accessor"

21-3

 <class name="graphic" code="grph" description="An object in a Sketch+SCD document. There are subclasses for each

kind of graphic." plural="graphics" inherits="managed object">

 <cocoa class="SKTGraphic"></cocoa>

 <property name="fill color" code="fclr" description="fill color" type="color">

 <cocoa key="scriptingFillColor"></cocoa>

 </property>

 <property name="stroke color" code="sclr" description="stroke color" type="color">

 <cocoa key="scriptingStrokeColor"></cocoa>

 </property>

 <property name="stroke thickness" code="slwd" description="the width of the stroke" type="real">

 <cocoa key="scriptingStrokeWidth"></cocoa>

 </property>

 </class>

Relationships

A relationship is scriptable if its owner and target entities are scriptable.

Its user info may have a value for the key "sdef description".

21-4

The Containment Root

Specifying the Suite's sdef keys and values ..40

Specifying the Document's Elements and Properties: sdef keys and values ..43

22-1

22

Specifying the Suite's sdef keys and values

The SCD Framework uses the Document's custom containment root entity to hold the keys and values that specify the

suite.

23-1

23

23-2

The corresponding section of the generated sdef follows:

 </responds-to>

 </class>

 </suite>

 <suite name="OutlineEdit+SCD suite" code="OEas" description="Demo OutlineEdit+SCD for CAWUG">

 <!--Rough draft sdef generated from a data model by the Scriptable Core Data (SCD) Framework.-->

 <class name="document" code="docu" inherits="document" description="Demo OutlineEdit+SCD for CAWUG">

 <cocoa class="MyDocument"></cocoa>

 <element type="managed object" access="rw" description="Description forthcoming">

 <cocoa key="managedObjects"></cocoa>

 </element>

23-3

Specifying the Document's Elements and Properties: sdef keys and values

The SCD Framework uses the Document's custom containment root entity to extend the AppleScript document class

('docu') with elements (to-many relationships) and properties (attributes).

The generated sdef exposes any scriptable relationships of the custom containment root as elements of the document.

The relationship's user info may have a key "sdef description" with a value.

24-1

24

24-2

 <class name="document" code="docu" inherits="document" description="Demo OutlineEdit+SCD for CAWUG">

 <cocoa class="MyDocument"></cocoa>

 <element type="managed object" access="rw" description="Description forthcoming">

 <cocoa key="managedObjects"></cocoa>

 </element>

 <element type="note" access="rw" description="Description forthcoming">

 <cocoa key="notes"></cocoa>

 </element>

 <element type="priority" access="rw" description="Description forthcoming">

 <cocoa key="priorities"></cocoa>

 </element>

 </class>

The generated sdef may expose any scriptable attributes of the custom containment root as properties of the

document. (No examples provided.)

24-3

Specifying SCD Core Data Run Time Behavior

Specifying the Ordering Behavior of To-Many Relationships ...47

Specifying Other Behavior in Relationships: "new/delete" ...50

Specifying Class Name for Attributes of "Undefined" Core Data Type ...51

25-1

25

Specifying the Ordering Behavior of To-Many Relationships

A few keys specify the ordering behavior of a to-many relationship.

Note that the SCD Framework manages the order of to-many relationships in the "Model" component of the "Model-

View-Controller" design pattern. Apple's OutlineEdit example manages order in the "View" component. Compare tree

controllers of OutlineEdit (left) and OutlineEdit+SCD (right), below:

26-1

26

26-2

Typically, array and tree controllers in "Views" of SCD-based "Models" can use the class mode instead of the entity

mode, and use key paths to methods that return ordered arrays.

26-3

Specifying Other Behavior in Relationships: "new/delete"

A special user info key specifies that a relationship can "make new" and "delete" member objects. (Some relationships

should only "add" and "remove".)

27-1

27

Specifying Class Name for Attributes of "Undefined" Core Data Type

As a convenience for developers, the SCD Framework supports the key "setAttributeValueClassName:". See the Apple

documentation for the instance method -[NSAttributeDescription setAttributeValueClassName:].

Attributes of "Undefined" Core Data type can resort to a recommended design pattern:

See: Core Data Programming Guide: Non-Standard Persistent Attributes.

Consider an attribute named "foo" of "Undefined" Core Data type.

Specify its value class with the user info key "setAttributeValueClassName:" and an appropriate value (e.g., NSArray,

NSColor).

Add a new, corresponding attribute to hold "shadow data", e.g., "fooShadowData", of Core Data type "binary".

In the get accessor for "foo", if the underlying Core Data value is nil, lazily instantiate a value from fooShadowData.

In the -willSave method, calculate and set the current value for fooShadowData from the current value of foo.

See the Sketch+SCD example project, and refer to the SKTGraphic class. Refer to the data model entries and

accessors for

boundsAsNSValue uses "NSValue", and pairs with boundsShadowData

fillColor uses "NSColor", and pairs with fillColorData

28-1

28

http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/Articles/cdNSAttributes.html

strokeColor uses "NSColor", and pairs with strokeColorData

In the SCD framework, the SCDToManyArray entity's "array" attribute uses "NSArray", and in its subclass

SCDPersistentToManyArray, pairs with "shadowArrayData".

28-2

The SCD Distribution

Introduction ..55

The SCD Framework
Overview of the SCD Framework ..57

The SCD Data Model and Its Entity Classes ...58

A Prototype Custom Data Model with Custom Subclasses ...60

The SCDToMany Class Cluster ..62

Dynamic sdef Generation ..63

The SCD Example Application Projects
Introduction ...65

Bricks+SCD
Overview ...67

Data Model ...68

Test Scripts ...70

OutlineEdit+SCD
Overview ...72

Data Model ...73

Test Scripts ...76

Sketch+SCD
Overview ...78

Data Model ...80

Supporting the sdef from the Sketch-112 example ...82

Test Scripts for the Sketch-112 sdef ...83

Extending the sdef from the Sketch-112 example with SCD Commands ..84

Test Scripts for the Sketch-112 sdef Extended with SCD Commands ..86

29-1

29

A Test Script using the Dynamically Generated sdef ..87

29-2

Introduction

The SCD Distribution comprises the SCD Framework itself and three example applications.

It provides the SCD framework as a separate stand-alone project.

Each example application arrives as an Xcode source code project. In each project, the application target depends

on the SCD Framework target, and "embeds" the SCD framework in its Resources.

Adopting developers should consult

http://developer.apple.com/documentation/MacOSX/Conceptual/BPFrameworks/Tasks/

CreatingFrameworks.html

and its section

"Embedding a Private Framework in Your Application Bundle".

The subsection

"Using Separate Xcode Projects For Each Target"

30-1

30

http://developer.apple.com/documentation/MacOSX/Conceptual/BPFrameworks/Tasks/CreatingFrameworks.html
http://developer.apple.com/documentation/MacOSX/Conceptual/BPFrameworks/Tasks/CreatingFrameworks.html

The SCD Framework

Overview of the SCD Framework ..57

The SCD Data Model and Its Entity Classes ..58

A Prototype Custom Data Model with Custom Subclasses ..60

The SCDToMany Class Cluster ...62

Dynamic sdef Generation ..63

31-1

31

Overview of the SCD Framework

The SCD Framework simplifies the task of AppleScript enabling Core Data Document-based applications. The adopting

developer embeds the SCD Framework in the target application, and adds a few entities from the framework's data

model to the project's data model.

32-1

32

The SCD Data Model and Its Entity Classes

The SCD Framework's Data Model:

The inheritance diagram of the primary classes of the SCD Framework:

33-1

33

33-2

A Prototype Custom Data Model with Custom Subclasses

A Data Model Prototype Using the SCD Framework:

34-1

34

The corresponding inheritance diagram of the main classes for this prototype Data Model:

34-2

The SCDToMany Class Cluster

The SCD Framework uses the SCDToManyArray Class Cluster to manage order among the members of its to-many

relationships. An instance of SCDManagedObject maps each of its to-many relationships to an instance of

SCDToManyArray (or a subclass). The choice of ordering key in the relationship's "user info" determines at run time

which class of the cluster to instantiate. The SCDToManyArray class cluster comprises:

SCDToManyArray, the parent entity of the cluster. The parent class has:

a to-one relationship to its "owner," an instance of SCDManagedObject.

two attributes: its key, which is a string, and its array. The array attribute's data type is "Undefined" as far as Core

Data's persistence is concerned, but its "attribute value class name" is "NSArray." The key identifies a to-many

relationship in the owner. The array manages the order of the members of the relationship.

SCDPersistentToManyArray adds an attribute called "shadowArrayData" of type "binary." In its -willSave method, the

receiver builds an array of (permanent) URIs that reflects the order of the members of its array, and then archives

the array as NSData. This action saves the order of the members of the owner's to-many relationship with the

receiver's key, as part of the action of saving the document's graph of objects. When the document is re-opened

and rebuilds its object graph, the receiver lazily unpacks its stored, ordered URIs, and recovers the order of the

members of its relationship.

SCDSortedToManyArray sorts the members of its relationship using an array of sort descriptors.

35-1

35

Dynamic sdef Generation

The SCD Framework provides the SDefGenerating category on NSManagedObjectModel. It is a rather rich category, but

it couples only loosely to the rest of the framework.

The -[SCDAppDelegate sdefData] method calls a method in the category with its managed object model as the

receiver.

36-1

36

The SCD Example Application Projects

Introduction ..65

Bricks+SCD
Overview ...67

Data Model ..68

Test Scripts ...70

OutlineEdit+SCD
Overview ...72

Data Model ..73

Test Scripts ...76

Sketch+SCD
Overview ...78

Data Model ..80

Supporting the sdef from the Sketch-112 example ...82

Test Scripts for the Sketch-112 sdef ...83

Extending the sdef from the Sketch-112 example with SCD Commands ...84

Test Scripts for the Sketch-112 sdef Extended with SCD Commands ..86

A Test Script using the Dynamically Generated sdef ..87

37-1

37

Introduction

The SCD Framework Distribution includes three sample application source code projects.

Bricks+SCD, the bootstrap demo

OutlineEdit+SCD, derived from Apple's OutlineEdit example

Sketch+SCD, derived from Apple's Sketch example

38-1

38

Bricks+SCD

Overview ..67

Data Model ..68

Test Scripts ..70

39-1

39

Overview

Bricks+SCD was the first application written under the SCD Framework. It was intended as a very simple demonstration

of the framework. In fact, the framework and the Brick+SCD application shared the same development cycle. Its Data

Model is "dumb as a brick."

40-1

40

Data Model

The Data Model for Bricks+SCD has four entities from the Data Model in the SCD Framework, simply copied and

pasted. It also has the required custom subclass of SCDContainmentRoot. Beyond those required entities, it has just

one custom entity, "Brick." The Brick entity has just one attribute, "name." MyContainmentRoot has a to-many to Brick,

and the inverse relationship is a to-one to the containment root.

The document's containment root has a to-many to "bricks," and its members have persistent order.

41-1

41

Try setting the order to "sort name:" with the value "by name", re-compile and run again.

41-2

Test Scripts

makeMonths.applescript makes a new Bricks+SCD document and populates it with twelve bricks named for the months

of the year. The order is important. Save and re-open the resulting document. The order is preserved.

makePotatoes.applescript and makeSoflage.applescript are similar.

helloBricks+SCD.applescript uses the existing front document and makes a new brick that shows the current data and

time.

sortSafePeekAndPokeAtNamesAndUniqueIDsAndPokeAtNames.applescript renames the bricks of the existing front document

in a sequence with array indexes.

42-1

42

OutlineEdit+SCD

Overview ..72

Data Model ..73

Test Scripts ..76

43-1

43

Overview

OutlineEdit+SCD derives from the Core Data example project, OutlineEdit. It demonstrates how to add the SCD

Framework to an existing Core Data Document-based application. Apple's OutlineEdit example does not preserve the

order of its "Notes" and therefore fails in its nominal purpose, to edit outlines. OutlineEdit+SCD includes the SCD

Framework, but makes only minor changes to the example source code. The main changes are are to the Data Model,

where the SCD base classes are added, and the Note and Priority entities inherit from SCDManagedObject instead of

NSManagedObject. Annotations in the Data Model specify persistent order for the document's notes and priorities, and

for each Note's children.

44-1

44

Data Model

Here's the Data Model of Apple's OutlineEdit example (the "Before" shot):

Here's the Data Model of the OutlineEdit+SCD example (the "After" shot). The blue entities come from the SCD

Framework. The Note and Priority entities both have new to-one relationships to MyContainmentRoot, and the inverse

relationships are "to-many."

45-1

45

Of course, we want to preserve the order of the "Note" instances in the document, so we specify the order of

MyContainmentRoot's "notes" relationship:

45-2

45-3

Test Scripts

peekAtPriorities.applescript acts on an empty document to count and "get" the priorities.

writeLimerick.applescript makes a new document and fills it with a limerick. It assigns a priority to each of the five notes,

reflecting the poetic structure.

probePriorities.applescript acts on the document that results from the script above, and sets new "rank" values for those

priorities.

46-1

46

Sketch+SCD

Overview ..78

Data Model ..80

Supporting the sdef from the Sketch-112 example ..82

Test Scripts for the Sketch-112 sdef ..83

Extending the sdef from the Sketch-112 example with SCD Commands ...84

Test Scripts for the Sketch-112 sdef Extended with SCD Commands ..86

A Test Script using the Dynamically Generated sdef ...87

47-1

47

Overview

The Sketch+SCD example derives from the venerable Sketch example (née Draw and Draw2, from the Age of

NeXTSTEP). Sketch+SCD demonstrates how an existing Cocoa application can be revised for Core Data persistence,

yet retain its AppleScript Dictionary.

In Sketch, the primary class of the "Model" is SKTGraphic. Its core instance variable, "bounds", is of type NSRect. The

Sketch+SCD version uses an NSValue to wrap the NSRect. The corresponding Core Data attributes are

"boundsAsNSValue" (transient) and "boundsAsShadowData" (binary). The AppleScript Dictionary for Sketch suggests

separate numeric attributes in the Data Model for the x and y positions, the width, and the height. But, for this

demonstration, it seemed good to adapt the Core Data Model to the Cocoa implementation, and to keep it as familiar

as possible.

In the original Sketch project, the SKTGraphicView class adds and removes itself as an observer to instances of

SKTGraphic and subclasses, as the instances are added to or removed from the graphics array. Initially, that led to

trouble with Core Data's notions of object life cycle. For instance, the "Revert to Saved" menu action croaked. And in

my misery, I added behavior and API to the SCD Framework to manage KVO per relationship, respecting the Core

Data object life cycle. See the section "Make the Pain Go Away!"

I've added the alpha channel to the colors. But, it seems AppleScript neglects the alpha channel. That's a bit sad.

I fixed a glitch in SKTImage. In Apple's Sketch example, SKTImage can't save some kinds of images.

 Build and run Sketch from the Leopard distribution.

Make a new Sketch document.

Drag in the "Rectangle.tiff" file from the project's source code directory (used in the Sketch application's Resources,

for its tool window).

Save and re-open the document.

The document appears blank. Oops!

Select all.

The image appears in the right place and with the right size, but is empty.

48-1

48

See the -[SKTAppDelegate sdefData] method. It overrides SCDAppDelegate's method to return a different sdef at run

time. Developers can readily modify the code and recompile to achieve three distinct results:

For the value of NSString *target variable, choose @"Sketch-112_After", and the method will return the sdef from

the Sketch-112 example, minimally modified to accommodate the SCD Framework, and with a few bug fixes.

For the value of NSString *target variable, choose @"Sketch-112_AfterPlusCommands", and the method will return

the sdef above, with a few added commands. The additional commands might prove generally useful for SCD-based

data models and extended sdefs.

Turn the whole method into a comment, and the SCDAppDelegate method will return the sdef generated by the SCD

framework. It permits access to the object graph, but the only AppleScript enabled attribute is the stroke width.

48-2

Data Model

Here's the Data Model for Sketch+SCD. The major features:

The familiar group of entities from the SCD Framework Data Model, copied and pasted.

A custom subclass of SCDContainmentRoot, SketchContainmentRoot

with a to-many to SKTGraphic

The central custom entity, SKTGraphic

with a to-one to SketchContainmentRoot, and the obvious inverse

with attributes

boundsAsNSValue, transient and undefined, with a User Info entry, "setAttributeValueClassName:" =

"NSValue"

boundsShadowData, for saving the bounds information as binary data

fillColorData and strokeColorData, for saving the colors as binary data

otherwise, it's a faithful Core Data representation of the original SKTGraphic class in Sketch

The subclasses

SKTText and SKTImage have contentsData for saving contents as binary data

49-1

49

49-2

Supporting the sdef from the Sketch-112 example

The class SKTAppDelegate overrides -sdefData from SCDAppDelegate.

Use the line: NSString *target = @"Sketch-112_After"; to set the path for the bundle resource.

The method then returns the sdef from the Sketch-112 example (stored in the application's Resources), but with a few

modifications.

Added "<type type="text"/>" to a few AppleScript Classes. See the comments in the scripts for credit to the author

of that fix, Steve Evangelou.

Added the "managed object" class (from the typical generated sdefs).

Hmmm. I found it necessary to change the AppleScript name (term) for the SKTRectangle class to "box" (was

"rectangle"). There's a "rectangle" type in the Standard Suite (the window's bounds property).

The sdef from Sketch-112 declares not just graphics, but circles, lines, boxes, images, and text areas as elements of

the document. The SketchDocument and SketchContainmentRoot classes add some methods to accommodate these

as filtered arrays.

50-1

50

Test Scripts for the Sketch-112 sdef

make circle, box, line, text area.applescript does as its name suggests: makes one of each of these graphics. In makes a

new front document first.

evangelou++.applescript is named after the author cited in the comments. This script "peeks" at the text contents of the

first text area of a document. Run this script on the document evangelouTest.xml.

swapColorsInCircles.applescript swaps the fill and stroke colors of every graphic in the existing front document.

AppleScript neglects the alpha components, though. Run this script on the document swapColorsInCircles.xml.

stepInstancesOfClasses.applescript changes the x and y positions of each graphic in the document, depending on the

class of the graphic.

51-1

51

Extending the sdef from the Sketch-112 example with SCD Commands

The class SKTAppDelegate overrides -sdefData from SCDAppDelegate.

Use the line: NSString *target = @"Sketch-112_AfterPlusCommands"; to set the path for the bundle resource.

The method then returns the sdef from the Sketch-112 example as above, but with a few added commands.

Basic Core Suite Commands:

The proposed additional SCD commands need some review. They expose the NSScriptKeyValueCoding protocol to

AppleScript.

52-1

52

52-2

Test Scripts for the Sketch-112 sdef Extended with SCD Commands

test SCD commands.applescript performs a cross-check on the index of item x in elements with key "foo" command. In the

Sketch+SCD application, every object in the custom graphics collection is also a member of the managed objects

collection of the containment root. Run this script on a document with a large number of graphics, e.g., 544

graphics.xml. Note that the managed objects collection has only transient order. For a given document, the result of the

command set x to graphic 42 remains the same across save/open operations, unless one edits the collection. The same

is not true of the managed objects collection.

test Sketch+SCD remove and insert commands.applescript changes the order of the graphics collection in a document. Run

this script on "5 graphics.xml".

test Sketch+SCD relocate command.applescript changes the reorders the graphics collection without removing and

inserting objects. Run this script on "5 graphics.xml".

test text areas again.applescript changes the text contents of each text area in a document. Run it on any document with

text areas.

53-1

53

A Test Script using the Dynamically Generated sdef

The primary goal of the Sketch+SCD example source code is to AppleScript enable the application with a known sdef,

conventionally composed, and stored in the application's Resources. However, in the course of the development of any

AppleScript enabled Core Data application using the SCD Framework, it may very well prove useful to verify that the

dynamically generated sdef performs as expected. In the case of Sketch+SCD, the only scriptable attribute is the stroke

width of SKTGraphic. There's not much you can do with that, except to check that it works.

In SKTAppDelegate, select the method -[SKTAppDelegate sdefData] and turn it into a comment.

Recompile and run.

Build or choose a document with at least one graphic that has strokeWidth.

Run the script peekPokeStrokeThickness 1.applescript.

54-1

54

Guidelines for the Adopting Developer

Adopting an Existing Core Data Document-based Application to use the SCD Framework ..89

55-1

55

Adopting an Existing Core Data Document-based Application to use the SCD Framework

Start with an initial working version of your Core Data Document-based application.

If your application manages the order of members of any to-many relationships,

prepare to let SCD manage it, or

prepare appropriate custom subclasses of SCDToManyArray

Add the SCD Framework.

Copy the entities and relationships from the Data Model of the SCD Framework (SCD_Model.xcdatamodel)

Paste them into your custom Data Model

Fix the custom document inheritance:

MyDocument:NSPersistentDocument becomes MyDocument:SCDPersistentDocument

Add an application delegate that inherits from SCDAppDelegate. This adaptation impacts your nib files.

Subclass SCDContainmentRoot to, say, MyContainmentRoot

its relationships should reflect your custom document's AppleScript hierarchy

its attributes can handle persistent attributes of your document

In the Data Model Editor,

scriptable entities must inherit from SCDManagedObject

and for each scriptable entity, be sure to specify your custom class in the data model

add "sdef code" and "sdef term" to the user info of the entity

add "sdef code" and "sdef term" to the user info of each scriptable attribute

add optional user info keys and values to relationships and attributes as required

for to-many relationships, specify transient, persistent, or sorted order

for attributes of "Undefined" Core Data type, specify the attribute value class: setAttributeValueClassName:

Run mogenerator early and often:

Jon Rentzsch has provided the mogenerator tool.

See: rentzsch.com: mogenerator: Core Data codegen

56-1

56

http://rentzsch.com/code/mogenerator/

mogenerator separates custom logic from "boilerplate" logic

The entity MyCustomEntity in your Data Model yields the files:

MyCustomEntity.h,m — a class for custom methods

_MyCustomEntity.h,m — a class for "boilerplate" accessors

and some "boilerplate" accessors

There's a set of methods that presently don't appear in the mogenerator template. We need a special template to

treat them. Jon Rentzsch has promised such a template, but it isn't here yet. See http://devworld.apple.com/

documentation/Cocoa/Conceptual/ModelObjects/ModelObjects.pdf

"Collection Accessors

Collection accessors follow patterns, different for sets and arrays. The patterns are described in

Key-Value Coding Programming Guide, but here is a summary. Given a relationship named <key> :

 ! For an array, you implement countOf<Key> and objectIn<Key>AtIndex:. You may also

implement get<Key>:range:. If you want to support mutations, you also implement

insertObject:in<Key>AtIndex: and removeObjectFrom<Key>AtIndex:. Again to improve

performance, you may also implement replaceObjectIn<Key>AtIndex:withObject:.

 ! For a set, you implement an add<Key>Object: and remove<Key>Object: pair, an add<Key>:

and remove<Key>: pair, or both pairs. For greater efficiency, you can also implement

intersect<Key>: . "

Compile and test your application before you enable AppleScript.

check for the original behavior

check persistent order and sorted order behavior, where applicable

Got NSAppleScriptEnabled? Modify the Info.plist for "dynamic" sdef.

<key>NSAppleScriptEnabled</key>

<string>YES</string>

<key>OSAScriptingDefinition</key>

<string>dynamic</string>

56-2

http://devworld.apple.com/documentation/Cocoa/Conceptual/ModelObjects/ModelObjects.pdf
http://devworld.apple.com/documentation/Cocoa/Conceptual/ModelObjects/ModelObjects.pdf

Or in Xcode 3.1,

Test the dynamically generated sdef

The generated sdef simply exposes your data model as a dictionary.

In the case of Sketch+SCD, the generated sdef is useful only as a demonstration and cross-check.

"Your mileage may vary."

As necessary, override the -[SCDAppDelegate sdefData] method (see Sketch+SCD)

56-3

Observations from the Development Cycle

Core Data Models and Hierarchy ..93

Scripting Definition Files—We Need a Way to Check an sdef at Design Time ...94

A Retrospective ...95

57-1

57

Core Data Models and Hierarchy

One of the early tasks in adapting the SCD Framework comprises:

copy the entities and relationships from the SCD Framework's data model

paste them into your custom data model

for your scriptable custom entities, change the parent entity to SCDManagedObject.

My experience in the SCD Framework development cycle suggests that Apple should provide an "include" mechanism

in Core Data Models:

A developer should be able to "include" a data model from a component framework or bundle in a custom data

model.

Declare once, deploy as required.

58-1

58

Scripting Definition Files—We Need a Way to Check an sdef at Design Time

My experience in the SCD Framework development cycle suggests that Apple should provide MUCH better consistency

checking for sdef files. A stand-alone application would help a great deal.

59-1

59

A Retrospective

In retrospect, it might have been better to name SCDContainmentRoot differently:

to emphasize the delegate nature

SCDDocumentDelegate

CoreDataDelegate

CoreDataDocumentDelegate

or to emphasize the proxy nature

60-1

60

